光纤光谱仪光路模拟优化及波长标定

徐丹阳¹ 童建平¹ 高建勋¹ 汪 飞²
'浙江工业大学理学院,浙江杭州 310023
²杭州博源光电科技有限公司,浙江杭州 310023

摘要 光学系统是光谱仪的核心部件,决定了整个仪器的基本性能与体积。因此分析了几种光学系统的利弊,最终确定采用交叉非对称切尔尼-特纳系统,并用Zemax软件对光路进行了优化设计,确定整体分辨率为1.8 nm,测量范围为200~900 nm。利用 Matlab软件求解最小二乘法三阶多项式的拟合系数,采用 HG-1 汞-氯校准光源对波长进行 三阶曲线拟合校正,使其相对波长误差控制在0.05 nm 以内。与USB4000光纤光谱仪进行了数据对比分析,表明该 设计思路及方法切实可行。

关键词 光学设计;光路;模拟优化;波长标定

中图分类号 0433.1; 0435 文献标识码 A

doi: 10.3788/CJL201542.0516003

Fiber Spectrometer Optical Simulation Optimization and Calibration

Xu Danyang¹ Tong Jianping¹ Gao Jianxun¹ Wang Fei²

¹College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China ²Brolight Technology (Hangzhou) Co., Ltd, Hangzhou, Zhejiang 310023, China

Abstract The optical system is the core part of a spectrometer, and it determines the basic properties and the volume of the entire instrument. Advantages and disadvantages of several optical systems are analyzed, and the asymmetric Czerny–Turner system is adopted. The resulting optical path optimized with Zemax has an overall resolution of 1.8 nm, and a measurement range of 200~900 nm. Relative error of wavelength is controlled to be below 0.05 nm, with cubic spline interportation coefficients obtained from Matlab and HG-1 mercury– argon used as the calibration light source. Analyses on data for comparision with the USB4000 fiber spectrometer show that both of the design and implementation are feasible.

Key words optical design; optical path; simulation optimization; wavelength calibration **OCIS codes** 220.4830; 080.4295; 060.2370

1 引 言

光谱仪是现代光学仪器的重要组成部分,是对物质成分、结构进行观测、分析和处理的基本设备之一^[1-2]。 它将不同频率的光辐射按照一定的物理规律(光的色散、衍射原理)分解开来,形成相应的光谱,并结合计算 机技术、电子技术和精密机械实现对该光谱波长、强度的测量与研究^[3-5]。准直、分光和聚焦成像系统构成了 仪器的光学系统,是整个光谱仪的核心部件,并决定了整台仪器的基本性能与体积。李特洛光学系统由于 使用一面反射镜作为准直和聚焦镜,因此必将存在二次和多次衍射,造成系统的杂散光过大;夏帕-格兰茨 系统由于离轴抛物面反射镜加工难度大,因此系统成本高,同时装配和调试难度也大;伯特-法斯梯系统也 存在着二次和多次衍射,且采用一面反射镜,自由度较小,装调较为复杂^[6-12]。本文采用的非对称式切尔尼-特纳系统不仅可避免二次和多次衍射,而且方便了反射镜的加工和装调,同时可保证系统的分辨率。使用 Zemax软件进行光路设计并优化后得到整机体积为91 mm×60 mm×34.5 mm、波长范围为 200~900 nm、分辨 率为1.8 nm 的微型光纤光谱仪。采用特征光谱定标法对光谱仪进行波长标定^[13-14],通过三阶多项式拟合的 方法实现电荷耦合元件(CCD)像素与波长的匹配,使最终实测误差控制在 0.05 nm 以内。

收稿日期: 2014-11-14; 收到修改稿日期: 2014-12-30

基金项目:浙江省教育厅科研项目(Y201329607)

作者简介: 徐丹阳(1983—), 男, 硕士, 实验师, 主要从事光电探测技术方面的研究。E-mail: xudanyang@zjut.edu.cn

2 模拟优化设计

2.1 光路选择与设计

微型光纤光谱仪的光学系统设计目的是依据像差的要求选择合适的系统,并对各光学元件与整体结构 进行设计优化,使系统的性能和体积达到设计要求。光学系统决定着整台仪器的光学性能与体积大小,因 此在光学系统微型化设计过程中,不仅要尽可能地减小光学系统的体积,同时又必须合理地控制系统像差 和杂散光,以确保设计的光学系统性能满足自身要求,并且还应考虑仪器的整体结构简单、可靠及价格低 廉。因此选择了在切尔尼-特纳系统^[15]基础上改进的交叉非对称切尔尼-特纳系统(图 1),系统初始参数如表 1所示。该光学系统使用两块小反射镜,不仅可以消除二次和多次衍射,还可以有效抑制系统的杂散光,使 该光学系统具有质量轻、结构紧凑的优点。

图 1 交叉非对称切尔尼-特纳光学系统 Fig.1 Cross-asymmetric Czerny-Turner optical system 表 1 系统初始结构参数

Table 1 Initial parameters of the system structure

Collimatio	n lens	Gr	ating	Focus	lens	Incident angle	Diffraction angle
Focal length	Aperture	Line density	Blaze wavelength	Focal length	Aperture	i	heta
62 mm	10.3 mm	0.6 line /µm	430 nm	70 mm	17.5 mm	-28.7°	13.9°

2.2 模拟优化

利用Zemax软件进行光学系统的模拟分析。初始光学系统的平面图如图2所示,从图中可知,光敏器件 CCD不在聚焦成像物镜的焦平面上,因此需要调整CCD与聚焦成像物镜之间的距离和角度。加大聚焦成像 物镜的孔径,使入射光束充分聚焦到CCD上,同时也减少了杂散光。以CCD与光轴的夹角和CCD到聚焦成 像物镜的距离为变量,改变聚焦成像物镜孔径的大小,利用Zemax软件的默认优化函数进行优化,优化后得 到的平面图如图3所示,最终聚焦成像的孔径为25mm,CCD与物镜之间的距离由59.5mm调整为53.6mm。 分别用200、300、550、800、900 nm处的点列图(图4),用以判断整个系统的分辨率是否达到设计要求,从图中 可以看出其分辨率为1.5、1.2、1.0、1.8、1.8 nm。因此该光学系统在有效波长范围内基本满足设计要求。

Fig.2 Optical system plan before optimization

图 3 优化后系统平面图 Fig.3 Optical system plan after optimization

3 标定与实验分析

常用的光谱仪波长标定是采用特征光谱在CCD对应的像素点上找到相应的位置,并采用多项式拟合等 方法来实现波长的标定。目前采用较多的方法是最小二乘法三阶多项式拟合,该方法的目的是得到最小的 偏差平方和。

$$\boldsymbol{\Phi} = \begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ \dots & \dots & \dots \\ 1 & x_6 & x_6^2 & x_6^3 \end{bmatrix},$$
(1)
$$\boldsymbol{\Theta} = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix},$$
(2)

(3)

式中 *a*₀,*a*₁,*a*₂,*a*₃为拟合系数,*x*₁,*x*₂,…,*x*₆为实测像素数,*y*₁,*y*₂,…,*y*₆为拟合后的波长。利用 Matlab 软件进行 编程求解得到 *y*=*a*₀+*a*₁*x*+*a*₂*x*²+*a*₃*x*³中的拟合系数。采用美国海洋光学公司生产的 HG-1 汞-氩校准光源(光谱 图如图 5 所示)对该光谱仪进行波长校正,波长校正中用到和拟合后得到并比较的数据如表 2 所示。

 $Y = \begin{bmatrix} y_2 \\ \cdots \end{bmatrix}$

该光谱仪进行波长标定后与美国海洋光学公司生产USB4000光纤光谱仪进行对比,各自实测光谱图如图6所示,与标准波长对比的数据如表3所示。

		中 国	激 光			
表2 波长校正数据						
Table 2 Wavelength calibration data						
Fitting	Theoretical	Measured pixel	Standard	Calibration	Relative	
coefficient	pixel number	number	wavelength /nm	wavelength /nm	error /nm	
178.69136	953	949	365.015	365.023	0.008	
0.19493	1170	1164	407.783	407.824	0.041	
7.87126×10 ⁻⁷	1311	1304	435.833	435.859	0.026	
7.37×10 ⁻¹⁰	1858	1847	546.074	546.064	-0.010	
	2009	1997	576.96	576.984	0.024	
	2019	2007	579.066	579.054	-0.012	

表3 实测波长对比数据

m 11 a	M 1	1 .1	1	
Table 3	Measured	wavelength	data foi	comparison

Standard arrival and here -	Ocean	0 Optics	Independent design		
Standard wavelength /hm -	Wavelength /nm Relative error /nm		Wavelength /nm	Relative error /nm	
365.015	364.690	-0.325	365.023	0.008	
407.783	407.240	-0.543	407.824	0.041	
435.833	435.370	-0.463	435.859	0.026	
546.074	545.520	-0.554	546.064	-0.010	
576.96	576.490	-0.470	576.984	0.024	
579.066	578.460	-0.606	579.054	-0.012	

从表2中可以看出该光谱仪经波长校正后具有很好的效果,与标准波长对比其波长相对误差控制在 0.05 nm以内。与美国海洋光学公司生产的USB4000光纤光谱仪进行比较,从表3中可以看出波长的相对误 差要高出一个数量级,但是分析图6发现,自行设计的光纤光谱仪在紫外探测方面较弱,主要原因在于东芝 公司生产的TCD1304AP在紫外波段的敏感性较弱(图7),因此需要在CCD表面粘贴或涂覆紫外感光膜。

4 结 论

分析了几种光学系统的利弊,确定采用交叉非对称切尔尼-特纳系统,并用Zemax软件对光路进行了优化设计,确定最终整体分辨率为1.8 nm,测量范围为200~900 nm。利用 Matlab软件求解最小二乘法三阶多项式的拟合系数,采用美国海洋光学公司生产的HG-1汞-氩校准光源对波长进行三阶曲线拟合校正,使其相对波长误差控制在0.05 nm 以内。与USB4000相比,该系统具有更高的测量精度,因此设计思路及方法是有效合理的,同时该仪器也具有很高的应用价值。

参考文献

- 1 Ju Hui, Wu Yihui. Development of micro spectrometers[J]. Micronanoelectronic Technology, 2003, 40(1): 30-37.
 翰 挥, 吴一辉. 微型光谱仪的发展[J]. 微纳电子技术, 2003, 40(1): 30-37.
- 2 Li Wenbing, Liu Muhua, Huang Lin, et al.. Quantitative analysis of Pb in *Ipomoea aquatica* by laser-induced breakdown spectroscopy
 [J]. Laser & Optoelectronics Progress, 2014, 51(9): 093001.
- 黎文兵, 刘木华, 黄 林, 等. 激光诱导击穿光谱对蕹菜中 Pb元素定量分析研究[J]. 激光与光电子学进展, 2014, 51(9): 093001. 3 Fan Shifu. Recent development of spectral technology and instrumentation[J]. Modern Instruments, 2007, 13(2): 1-5.
- 范世福.光谱技术和光谱仪器的近期发展[J].现代仪器,2007,13(2):1-5.
- 4 Wen Zhiyu, Chen Gang, Wen Zhongquan, et al.. A hybrid integrated micro fiber spectrometer design, simulation and primary experiments[J]. Acta Optica Sinica, 2003, 23(6): 740-744.

温志渝,陈 刚,温中泉,等.混合集成微型光纤光谱仪的设计模拟及实验[J].光学学报,2003,23(6):740-744.

- 5 Wapelhorst E, Hauschild J P, Muller J. Complex MEMS: A fully integrated TOF micro mass spectrometer[J]. Sensors and Actuators A: Physical, 2007, 138(1): 22-27.
- 6 Yang Zengpeng, Tang Yuguo, Bayanheshig, *et al.*. Optimization design method for optical system of prism-grating ultraspectral imaging spectrometers[J]. Acta Optica Sinica, 2014, 34(9): 0911003.

杨增鹏, 唐玉国, 巴音贺希格, 等. 棱镜-光栅组合色散型超光谱成像系统的优化设计[J]. 光学学报, 2014, 34(9): 0911003.

- 7 Li Yang, Zhu Yong, Chen Jianjun, *et al.*. Novel Fourier transform infrared spectroscopy detection system based on Hadamard transform[J]. Acta Optica Sinica, 2014, 34(s1): s130003.
- 李 阳,朱 永,陈建君,等.基于哈达玛变换的新型傅里叶变换红外光谱探测系统[J].光学学报, 2014, 34(s1): s130003.
- 8 Jia Hui, Yao Yong. Characteristics of typical optical systems with diffractive grating of micro-spectrometers and improvement of spectrometer's resolution[J]. Spectroscopy and Spectral Analysis, 2007, 27(8): 1653-1656.

贾 辉,姚 勇. 微小型光栅光谱仪光学系统的特点与光谱分辨率的提高[J]. 光谱学与光谱分析, 2007, 27(8): 1653-1656.

9 Wang Lingfang, Wen Zhiyu, Xiang Xianyi. Design and simulation of the NIR micro-spectrometer optical system[J]. Spectroscopy and Spectral Analysis, 2009, 29(6): 1721-1725.

王玲芳, 温志渝, 向贤毅. 近红外微型光谱仪光学系统设计与模拟[J]. 光谱学与光谱分析, 2009, 29(6): 1721-1725.

- 10 Wang Han, Li Shuifeng, Liu Xiuying. Optical structure of miniature spectrometer[J]. Journal of Applied Optics, 2008, 29(2): 230-233. 王 晗, 李水峰, 刘秀英. 微型光谱仪光学结构研究[J]. 应用光学, 2008, 29(2): 230-233.
- 11 Xue Qingsheng. Optical system design of large relative-aperture and wide field of view spaceborne imaging spectrometer[J]. Chinese J Lasers, 2014, 41(3): 0316003.

薛庆生. 星载大相对孔径宽视场成像光谱仪光学系统设计[J]. 中国激光, 2014, 41(3): 0316003.

12 Xue Qingsheng, Cao Diansheng, Yu Xiangyang. Optical design of neotype Schwarzschild spectral imaging system with a large relative aperture[J]. Chinese J Lasers, 2014, 41(1): 0116001.

薛庆生,曹佃生,于向阳. 新型大相对孔径 Schwarzschild 光谱成像系统设计[J]. 中国激光, 2014, 41(1): 0116001.

13 Xie Yinzhong, Zhuang Songlin, Zhang Baozhou. Research on calibration of spectrometers based on linear CCD[J]. Chinese Journal of Scientific Instrument, 2011, 32(3): 546-550.

谢印忠, 庄松林, 张保洲. 基于线阵 CCD 的光谱仪定标研究[J]. 仪器仪表学报, 2011, 32(3): 546-550.

14 Zhang Fang, Gao Jiaobo, Wang Jun, *et al.*. Absolute spectral radiation calibration of fiber spectrometer[J]. Journal of Applied Optics, 2011, 32(1): 101-105.

张 芳, 高教波, 王 军, 等. 光纤光谱仪绝对光谱辐射定标新技术[J]. 应用光学, 2011, 32(1): 101-105.

15 Wu Yan, Tang Yi, Ni Guoqiang, et al.. FUV imaging spectrometer based on crossed Czerny-Turner structure[J]. Opto-Electronic Engineering, 2009, 36(3): 125-129.

吴 雁, 唐 义, 倪国强, 等. 一种交叉的切尔尼-特纳型远紫外成像光谱仪[J]. 光电工程, 2009, 36(3): 125-129.

栏目编辑: 吴秀娟